Sharp conditions on global existence and blow-up in a degenerate two-species and cross-attraction system

نویسندگان

چکیده

Abstract We consider a degenerate chemotaxis model with two-species and two-stimuli in dimension d ≥ 3 find two critical curves intersecting at one point which separate the global existence blow up of weak solutions to problem. More precisely, above these (i.e. subcritical case), problem admits solution obtained by limits strong an approximated system. Based on second moment solutions, initial data are constructed make sure occurs finite time below supercritical cases). In addition, or non-existence minimizers free energy functional is discussed exist globally if size small. also investigate crossing between lines refined criteria terms masses given again distinguish dichotomy up. show that ups simultaneous for both species.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Exact Criterion for Global Existence and Blow Up to a Degenerate Keller-Segel System

A degenerate Keller-Segel system with diffusion exponent m with 2n n+2 < m < 2 − 2 n in multi dimension is studied. An exact criterion for global existence and blow up of solution is obtained. The estimates on L 2n n+2 norm of the solution play important roles in our analysis. These estimates are closely related to the optimal constant in the HardyLittlewoodSobolev inequality. In the case of in...

متن کامل

A note on critical point and blow-up rates for singular and degenerate parabolic equations

In this paper, we consider singular and degenerate parabolic equations$$u_t =(x^alpha u_x)_x +u^m (x_0,t)v^{n} (x_0,t),quadv_t =(x^beta v_x)_x +u^q (x_0,t)v^{p} (x_0,t),$$ in $(0,a)times (0,T)$, subject to nullDirichlet boundary conditions, where $m,n, p,qge 0$, $alpha, betain [0,2)$ and $x_0in (0,a)$. The optimal classification of non-simultaneous and simultaneous blow-up solutions is determin...

متن کامل

Existence and Blow-up for a Nonlocal Degenerate Parabolic Equation

In this paper, we establish the local existence and uniqueness of the solution for the degenerate parabolic equation with a nonlocal source and homogeneous Dirichlet boundary condition. Moreover, we prove that the solution blows up in finite time and obtain the blow-up set in some special case. Mathematics Subject Classification: 35K20, 35K30, 35K65

متن کامل

Blow-up and global existence profile of a class of fully nonlinear degenerate parabolic equations

This paper is mainly concerned with the blow-up and global existence profile for the Cauchy problem of a class of fully nonlinear degenerate parabolic equations with reaction sources. MSC: 35B33, 35B40, 35K65, 35K55

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Advances in Nonlinear Analysis

سال: 2021

ISSN: ['2191-950X', '2191-9496']

DOI: https://doi.org/10.1515/anona-2020-0189